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Abs t r ac t -The  steady-state behavior is investigated for a non-isothermal, non-adiabatic CSTR in which an autocata- 
lytic reaction takes place with kinetic scheme 

A + B~2B + heat, rate = k(T) CACB 

Singularity theory is applied to find the maximal number of steady-state solutions and to determine the regions 
in the parameter space corresponding to these solutions. The parameter space is divided into four regions correspond- 
ing to four types of different steady-state structure and it is shown that multiple steady-states (up to three.) exist 
for some set of parameter values. 
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INTRODUCTION 

Steady-state multiplicity can be observed in many chemically 
reacting systems. It has been thought that steady-state multiplicity 
is very important for the optimum operation and control of chemi- 
cal reactors. While this phenomenon can be found in various types 
of chemical reactors, lumped-parameter systems such as CSTR 
have been the main subject due to their ease of analysis. The 
multiplicity features of systems in which a single chemical reac- 
tion takes place have been studied extensively in both theoretical 
and experimental aspects [1-33. However, as the chemical reac- 
tion system becomes more complicated 1-4-63, it becomes more 
difficult to analyze the system because a large number of parame- 
ters are involved. 

To overcome such difficulties, Golubitsky and Keyfitz [-7] intro- 
duced the singularity theory which is a powerful method for deter- 
mining the multiplicity features of a chemically reacting system. 
More recently, Balakotaiah and Luss [8-11] developed a system- 
atic method of applying the singularity theory to various chemical- 
ly reacting systems. 

Meanwhile, the autocatalytic reaction has been considered as 
an important subject in many works [-12-24]. Singularity theory 
has been applied to this autocatalytic reaction to examine the 
steady-state multiplicity features [25-31]. Previous works on this 
system have not considered the non-isothermal case until Kay 
et al. [-26] who analyzed the steady-state behavior with some 
simplifying assumptions concerning the temperature dependence 
and the operating conditions. 

In this work, the singularity theory is applied to the non-isother- 
mal CSTR in which a quadratic autocatalysis is taking place. It 
will be shown that a rather simple steady-state behavior can be 
obtained without the simplifying assumptions which were introduc- 
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ed by Kay et al. [26]. 

MATERIAL AND ENERGY BALANCES 

The quadratic autocatalytic reaction which is to be considered 
in this study has the following kinetic scheme: 

A+B-~2B+heat ,  rate=k(T) CAC~ 

When this reaction is taking place in a non-i~thermal, non-adia- 
batic CSTR, the material balance equation k~r each of the reac- 
tants may be written in the form 

V~dtA =- q(CAj-- CA)--VkCAC8 (1) 

V~-t8 = q(C~-  Cs) + VkCAC8 (2) 

and the energy balance equation becomes 

dT 
pCpV~- = qpCp(Tt - T ) -  Ua(T-  To) + ( -  Ati)VkCACB (3) 

where k is the Arrhenius rate constant expressed as 

k = ko exp ( -  E/RT) 

Here, CA and CB denote the concentrations of A and B, respec- 
tively, while T, q and V represent the temperature, the flow rate 
and the reactor volume, respectively. Other symbols are defined 
in the nomenclature. 

Steady-state equations can be obtained from Eqs. (1) to (3) with 
the left hand sides equal to zero. At steady-state conditions, Eqs. 
(1) through (3) may be reduced to a single equation for the tem- 
perature, which should be involved with the following dimension- 
less groups: 

Y :  - ~ Da= Vk,C~j RT~ 
RT ' q ' p=  E 
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Csr Re ,v( -  AH) (4) 
Y =--~AJ' [3= EpC,(I+ H) 

where 

T T/+ HT, H = _ U a  
" =  I + H - '  qpC~ 

In this case. the reduced steady-state equation for the dimension- 
less temperature is 

F(Y, Da, p) = Da exp(Y) {([3 + p)Y + 1 }{(g- 13y)Y + 1} - [W(1 + laY) 
= 0  (5) 

where p is a vector of three dimensionless parameters la, [3 and 
y. We note that in the feasible region of the parameter space, 
Da, la and [3 are positive and y is non-negative while Y is negative. 
The Damk6hler number Da is taken as the bifurcation parameter 
in this study. 

It is to be noted at this point that the way of choosing dimension- 
less groups in this study is different from that of Kay et al. [26]. 
While we take the dimensionless temperature as Y= - E / R T ,  they 
defined the dimensionless temperature 0 as 0=(T-T0)E/RT02 
(T: inflow temperature), and made an approximation of c 0 ( 1  
(where e=  RT0/E) to express the exponential term in the Arrhe- 
nius rate constant as e ~ This was necessary for an ana]ytic treat- 
ment of their model. 

S INGULARITY ANALYSIS 

Since the function F(Y, Da, p) given by Eq. (5) is continuous 
and differentiable as many times as necessary, we may regard 
it as a smooth mapping. To determine the local qualitative fea- 
tures of F(Y, Da, p) in Eq. (5) by applying the singularity theory, 
it is required to find a simpler mapping G that is contact equiva- 
lent to the mapping F. The mapping G can be found by using 
several equality and inequality conditions about the mapping F, 
where the equality conditions are called the defining conditions 
while the inequality conditions are called the non-degeneracy con- 
ditions. The actual procedures of obtaining the mapping G by 
applying these conditions have been established by Golubitsky 

and Keyfitz [73. 
The defining conditions of F can be found by consklering the 

singularity of highest order. In this case the defining conditions 

are 

F =  o F  ___02F- oF = 0  (6) 
OY oY 2 0Da 

These simultaneous equations can be solved analytically (but with 
lengthy manipulations) to give a solution in parametric form: 

yo = _ 1/~1 

Da ~ = exp(1/p) 

y~ =0  
[3 ~ = V' (7) 

At this singular point, 

0SF 02F ~e0 (8) 
0 Y~ 0YoDa 

which is the non-degeneracy condition of F. Eq. (7) represents 

the most degenerate singular point that lives in the fi.~asible re- 
gion. All the possible geometric structures of the function F are 

obtained by certain perturbations of a variable in the neighbor- 
hood of this singular point. 

According to Golubitsky and Keyfitz ~7], the :mapping F is con- 
tact equivalent to the mapping G represented by 

G(x, k) = x :~ + kx (9) 

in the neighborhood of this singular point. However, because the 
mapping G is contact equivalent to the mapping F only in the 
neighborhood of this singular point, all the perturbations of inde- 
pendent direction originating from this point cannot be represen- 
ted by G(x, k). Therefore, we must obtain the universal unfolding 
that can represent all the perturbations of independent direction. 
The universal unfolding of G(x, k) is given by 

G(x, k, a ) = x 3 + k x + a ~ + a 2 x  ~ (10) 

where a is a vector of parameters. The mapping G(x, k) is usually 
called the pitchfork bifurcation. 

According to Golubitsky and Schaeffer [-32-~:], all the possible 
boundaries of the region in the parameter space corresponding 
to each of the bifurcation diagrams can be obtained by examining 
the three types of varieties; i.e., hysteresis, isola and double-limit 
varieties. In this case, the double-limit variety does not exist. The 
hysteresis variety is the set of all points in the plane (ab ~ )  
satisfying the conditions 

G = 0 G  _ 02G =0  (11) 
Ox Ox 2 

along with Eq, (10). Whereas the isola variety is given by the 
set of all points satisfying the conditions 

G -  0G _ 0G =0  (12) 
Ox Ok 

L8j. The result has been well established as shown in Fig. 1 ~ -' 
From Fig. 1, we see that the maximum number of steady-states 
is three. Also the bifurcation diagrams in Fig. I represent all the 
possible structures of bifurcation diagram of F. 

The bifurcation sets of F can be obtained by solving the follow- 
ing hysteresis 

F =  oF _ 0~F = 0  
oY OY 2 

F =  oF _ oF = 0  
0Y 0Da 

and isola variety equations. 

(13) 

(14) 

The hysteresis and isola varieties obtained by Eqs. (13) and (14) 
are shown in Fig. 2(a). The point (s) in Fig. 2(a) represents the 
singular point, and the curve originating from this point is a hys- 
teresis variety. Since the hysteresis variety equation cannot be 
solved analytically, a numerical scheme is adopted here. The isola 
variety is given by y=O, namely, the la-axis. ] 'he relation lu= [3y 
is depicted by the dashed line in Fig. 2(a). When this line is cross- 
ed, one isolated curve appears or disappears from the feasible 
region of Y. Thus this line acts as an isola variety. 

When u the hysteresis variety has an asymptotic value of 
la which is determined from Eq. (13) as 

- [3 + V/[3([3 + 1) (15) 
P*= 2 

On the other hand, the value of p at the singular point of highest 
order is given by 
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Fig. !. Classification of the bifureutiom diagrams in the case of pitch- 
fork. 

Since la*<l a~ for all values of fl>0, we always have the hysteresis 
variety as shown in Fig. 2(a). 

The bifurcation diagrams corresponding to each region of (~t, 
y) plane are shown in Fig. 2(b) in which the vertical axis repre- 
sents the dimensionless temperature, 0 (=RT/E).  It is clearly 
seen that the maximum number of steady-states is three. 

Compared to the results by Kay et al. [26], Fig. 2 shows much 
simpler bifurcation sets and steady-state behavior. ]'his simpler 
feature seems to be entirely due to the different way of choosing 
dimensionless groups. As we use different dimensionless groups 
and choose the bifurcation parameter so that its variation causes 
changes in the dimensionless parameters in the model of Kay 
et al. [26], it is not allowed to compare the steady-state patterns 
and the shape of bifurcation sets directly with those of Kay et 
al. [26]. Nevertheless, the maximum number of steady-states re- 
mains unchanged by the way of choosing dimensionless groups. 

SPECIAL CASES 

t. No Cata lys t  in the  Feed (y=O) 
When Csz = 0. 'no reaction' is one of the possible steady-states. 

This trivial solution is usually called "washout' .  On the other 
hand, non-trivial solutions exist when the catalyst B is charged 
initially into the reactor as a seed or there is another reaction 
which produces B, because this originally present or reaction-pro- 
duced catalyst ignites the autocatalytic reaction. Therefore, multi- 
ple steady-states are expected with "washout" as one of the ~ s -  

J m a r y ,  1995 

Fig, 2. The bifurcation sets (a) and t ~  eorvesl~nding bifurcation dia- 
grams (b) for quadratic 8utocatalytic reactions (mrbitrary value 
of ~). 

sible steady-states. In this case, the possible bifurcation diagrams 
are given by the parts (e) and (O of Fig. 2(b). 
2. Excess  Cata lys t  in the Feed ( y ~ l )  

With an increase in the amount of catalyst B in the feed, autoca- 
talytic effect fades away because a large amount of catalyst B 
makes feedback effect not so important. Thus. for a sufficiently 
large value of y, it behaves like the first-order kinetics. The bifur- 
cation set in Fig. 2(a) shows that the region (a) and (b) becomes 
smaller and smaller with an increase of y. Therefore, in the case 
of excess catalyst in the feed, only two bifurcation diagrams given 
by the parts (c) and (d) of Fig. 2(b) are observed in the feasible 

range of • values. 
3. I sothermal  Case 

From the material balance equations, the following single steady 
-state equation for the conversion of A can be obtained. 
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Fig. 3. The bifurcation diagrams in the isothermal case. 

R :universal gas constant [cal(mol.~ 
T : absolute temperature [~ 
T,. :reference temperature [~ 
U :overall heat transfer coefficient [cal/(~ 
V :volume of reactor [cm 3] 
X : conversion 
x : a  state variable 
Y :dimensionless temperature defined by Eq. (4) 

Greek Letters  
Ct 

G(XA, Da, y)=Xa--Da(1--X.4)(y+XA)=0 (17) 13 
Y 

The defining and non-degeneracy conditions may be written 0 
k 

G -  0G _ OG --0 (18) p 
oX~ oDa 

P 
02G 0ZG :~0 (19) 
0Xa 2 OXAoDa 

In this case, the most degenerate singular point is 

XA~ D a ~  y ~  (20) 
Subscr ipts  

For the mapping G, only isola variety exists, which is given by A, B : species A, B 
u The bifurcation diagrams corresponding to the wdue of y c : coolant 
are shown in Fig. 3. From Fig. 3, we see that two steady-states f : feed 
including "washout" can be obtained in case of y = 0  while only 
a unique steady-state is obtained when y>0. The same result 
has been reported by Gray and Scott [-18]. 

CONCLUSION 

From the combined use of singularity and bifurcation theories 
we have found all the possible types of bifurcation diagrams and 
the boundaries of the region in the parameter space correspond- 
ing to each of the bifurcation diagrams for a non-isothermal auto- 
catalytic reaction taking place in a CSTR. 

Four types of different steady-state behavior were observed 
in the feasible region of parameter space and it was shown that 
multiple steady-states (up to three) exist for some set of parame- 
ter values. 

The present model has treated the case with different '~empera- 
tures between the feed and the coolant whereas Kay et al. [261 
assumed equal temperatures. It is interesting to note that much 
simpler steady-state behavior has been obtained without the sim- 
plifying assumptions that were introduced by Kay et al. [263. 

NOMENCLATURE 

a :heat transfer area Ecm 23 

A, B :species A, B 
C : concentration [-mol/cm 3] 
Cp :heat capacity Ecal/(g.~ 
Da : Damk6hler number 
E :activation energy [cal/mol] 
- A H :  heat of reaction Ecal/mol] 
H :dimensionless heat transfer coefficient 
ko : pre-exponential factor 
k :reaction rate constant I-l/(mol-sec)] 
p :vector of parameters 
q : flow rate [cm3/sec] 

:vector of parameters 
:dimensionless heat of reaction 
:ratio of concentrations defined by Eq. (4) 
: dimensionless temperature 
: bifurcation parameter 
:dimensionless activation energy 
: density [g/cm :~3 

Superscr ipts  
o :singular point coordinate 
* : asymptotic value 
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